document.write( "Question 1115363: For the function g(x) = x^3/(2x^3-x^2-3x) determine
\n" ); document.write( "a. the vertical asymptotes, if any
\n" ); document.write( "b. the holes, if any
\n" ); document.write( "c. the horizontal asymptotes, if any
\n" ); document.write( "d. the oblique asymptote, if any
\n" ); document.write( "

Algebra.Com's Answer #730240 by josgarithmetic(39625)\"\" \"About 
You can put this solution on YOUR website!
Some factorization will help to identify some of those details.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"%28x%2Ax%5E2%29%2F%28x%2A%282x%5E2-x-3%29%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"highlight_green%28%28x%2Fx%29%28%28x%5E2%29%2F%282x-3%29%28x%2B1%29%29%29\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Undefined for x at 0, but since there is \"x%2Fx\", a HOLE at x = 0.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice degree of numerator and denominator of g(x) are the same, so horizontal asymptote is \"y=1%2F2\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Vertical asymptotes: Look at the denominator of the factored form.
\n" ); document.write( "Asymptotes for \"x=-1\" and for \"x=3%2F2\".
\n" ); document.write( "
\n" );