document.write( "Question 1115257: If two circles, tangent externally at P, touch a given line at points A and B, prove that angle BPA is a right angle. Thank you. \r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #730179 by ikleyn(52788)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "  \r\n" );
document.write( "  \r\n" );
document.write( "  \r\n" );
document.write( " \r\n" );
document.write( "
\r\n" ); document.write( "\r\n" ); document.write( "The Figure on the right shows two circles with centers at points R and S, \r\n" ); document.write( "\r\n" ); document.write( "tangent externally at point P and touching the given straight line at points A and B. \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "We need to prove the statement that the triangle BPA is right angled triangle.\r\n" ); document.write( "\r\n" ); document.write( " \r\n" ); document.write( "Let < 1 be the angle PAB; < 2 be the angle PBA; < 3 be the angle BPA;\r\n" ); document.write( "\r\n" ); document.write( " < 4 be the angle PAR; < 5 be the angle APR; < 6 be the angle PBS;\r\n" ); document.write( "\r\n" ); document.write( " < 7 be the angle BPS.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Notice that < 4 = < 5, since the triangle ARP is isosceles.\r\n" ); document.write( "\r\n" ); document.write( "Similarly, < 6 = < 7, since the triangle BSP is isosceles.\r\n" ); document.write( "\r\n" ); document.write( " \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "
Also notice that RPS is a straight line, because the segments RP and SP are perpendicular radii to the common tangent line \r\n" ); document.write( "to the two circles at their touching point P.\r\n" ); document.write( "\r\n" ); document.write( "We then have\r\n" ); document.write( "\r\n" ); document.write( " < 1 + < 4 = 90°,\r\n" ); document.write( " < 2 + < 6 = 90°,\r\n" ); document.write( "\r\n" ); document.write( "which implies < 1 + < 2 = 180° - (< 4 + < 6) = 180° - (< 5 + < 7) = < 3. (1)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Thus we have these two equalities\r\n" ); document.write( "\r\n" ); document.write( " < 1 + < 2 - < 3 = 0 (2) ( same as (1) ), and\r\n" ); document.write( "\r\n" ); document.write( " < 1 + < 2 + < 3 = 180° (3) ( as the sum of interior angles of the triangle BPA).\r\n" ); document.write( "\r\n" ); document.write( "By adding equations (2) and (3), you get < 1 + < 2 = 90°, which immediately implies that < 3 = 90°. \r\n" ); document.write( "
\r
\n" ); document.write( "\n" ); document.write( "QED.   Proved and solved.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );