.
\n" );
document.write( "The solution by @josgarithmetic is incorrect.\r
\n" );
document.write( "\n" );
document.write( "Below please find the correct solution.\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "First, the given point (4,5) does not belong to the parabola y = x^2 + 1.\r\n" );
document.write( "\r\n" );
document.write( " Everybody can check it in 3 seconds.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, it is INCORRECT to evaluate the slope of 2x at this point.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "This slope must be evaluated at the point ON THE CURVE, instead.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, my solution starts stating that 2x is the slope of the tangent line at the (unknown) point on the parabola y = x^2+1.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Therefore, the slope of the perpendicular line to the curve is
.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now I can write the equation for the perpendicular line having the slope of
and passing through the points (x,y) and (4,5), \r\n" );
document.write( "\r\n" );
document.write( "where x is unknown and y = x^2+1:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "
=
,\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "
=
,\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "
= -x+4\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "
= 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The plot of the last polynomial is shown in the Figure 1 below.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Figure 1. Plot y =
\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The polynomial has 3 roots, and the roots are irrational numbers (they are not rational).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "I used Excel \"What-if-Analysis\" and calculated these roots approximately, with 3 decimals after the decimal point.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The roots are x= 2.109, -0.650 and -1.46, giving the values for the slopes m =
\r\n" );
document.write( "\r\n" );
document.write( " m = -0.237, 0.769 and 0.343 respectively.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, the three lines satisfying the condition of perpendicularity are\r\n" );
document.write( "\r\n" );
document.write( " y = -0.237*(x-4)+5, y = 0.769*(x-4)+5, and y = 0.343*(x-4)+5.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "These lines, together with the parabola y = x^2+1, are shown in the Figure 2 below.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Figure 2. Plot y =
(red), y = -0.237*(x-4)+5 (green), y = 0.769*(x-4)+5 (blue), y = 0.343*(x-4)+5 (purple)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Notice that the intersection of these straight lines is exactly the given point (4,5).\r\n" );
document.write( "
\r
\n" );
document.write( "\n" );
document.write( "Solved.\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "