document.write( "Question 1114655: You randomly select and weigh 30 samples of an allergy medicine and the sample standard deviation is 1.20 milligrams. Assuming the weights are normally distributed, construct 99% confidence intervals for the population variance\r
\n" ); document.write( "\n" ); document.write( "(a) Complete the table:
\n" ); document.write( "Population Parameter Being Estimated
\n" ); document.write( "Point Estimate
\n" ); document.write( "Sample Size n =
\n" ); document.write( "Margin of Error
\n" ); document.write( "Distribution Used
\n" ); document.write( "Reason for Using that Distribution
\n" ); document.write( "Confidence Level
\n" ); document.write( "Confidence Interval
\n" ); document.write( "Units for the Confidence Interval (if applicable)\r
\n" ); document.write( "\n" ); document.write( "(b) Interpret the confidence interval (don’t forget the units):
\n" ); document.write( "

Algebra.Com's Answer #729600 by rothauserc(4718)\"\" \"About 
You can put this solution on YOUR website!
Problem asks to construct a 99% confidence interval for the population variance
\n" ); document.write( ":
\n" ); document.write( "The variance is a non-negative number. This means the domain of the probability distribution is not (−∞,∞), therefore the normal distribution cannot be the distribution of a variance. The correct PDF must have a domain of [0,∞), it can be shown that if the original population of data is normally distributed, then the expression (n−1)s^2/σ^2 has a chi-square distribution with n−1 degrees of freedom.
\n" ); document.write( ":
\n" ); document.write( "alpha(a) = 1 -(99/100) = 0.01
\n" ); document.write( ":
\n" ); document.write( "a/2 = 0.005
\n" ); document.write( ":
\n" ); document.write( "critical probability(p*) = 1 - 0.005 = 0.995
\n" ); document.write( ":
\n" ); document.write( "degrees of freedom(df) = 30 -1 = 29
\n" ); document.write( ":
\n" ); document.write( "chi^2 (0.995) distribution with df = 29 is 13.121
\n" ); document.write( ":
\n" ); document.write( "chi^2 (0.005) distribution with df = 29 is 52.336
\n" ); document.write( ":
\n" ); document.write( "now we evaluate (n-1)s^2/chi^2 for 13.121 and 52.336
\n" ); document.write( ":
\n" ); document.write( "for 13.121
\n" ); document.write( ":
\n" ); document.write( "(30-1)(1.20)^2/13.121 = 3.1827
\n" ); document.write( ":
\n" ); document.write( "for 52.336
\n" ); document.write( ":
\n" ); document.write( "(30-1)(1.20)^2/52.336 = 0.7979
\n" ); document.write( ":
\n" ); document.write( "*******************************************************************
\n" ); document.write( "99% confidence interval for variance is [0.7979, 3.1827] milligrams
\n" ); document.write( "*******************************************************************
\n" ); document.write( ":
\n" ); document.write( "
\n" ); document.write( "
\n" );