document.write( "Question 1114538: Please help. Thank you.
\n" );
document.write( "Find all values of x and y so that u=xi+2yj-8k is perpendicular to both v=2i-j+k and w=3i+2j-4k. \n" );
document.write( "
Algebra.Com's Answer #729468 by ikleyn(52852) You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "The condition that the vector u = xi+2yj-8k is perpendicular to the vector v = 2i-j+k is that their scalar product is equal to zero:\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " x*2 - 2*y - 8 = 0. (1)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The condition that the vector u = xi+2yj-8k is perpendicular to the vector w = 3i+2j-4k is that their scalar product is equal to zero:\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " x*3 + 4y + 32 = 0. (2)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Thus you have this system of 2 equations in 2 unknowns \r\n" ); document.write( "\r\n" ); document.write( " 2x - 2y = 8 (1')\r\n" ); document.write( " 3x + 4y = -32 (2')\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Apply the Elimination method. For it, multiply eq(1') by 2. Keep eq(2') as is:\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " 4x - 4y = 16 (1'')\r\n" ); document.write( " 3x + 4y = -32 (2'')\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Now add equations (1'') and (2'')\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " 7x = 16 - 32 ====> x =\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |