document.write( "Question 1114151: The point P(-3,-6) lies on the terminal arm of an angle θ in standard position.
\n" );
document.write( "a) Determine the exact values of sin θ, cos θ and tan θ.
\n" );
document.write( "b) Determine the principal angle, θ. \n" );
document.write( "
Algebra.Com's Answer #729159 by rothauserc(4718)![]() ![]() You can put this solution on YOUR website! we are given P(-3,-6) on the terminal arm \n" ); document.write( ": \n" ); document.write( "this puts theta in the third quadrant \n" ); document.write( ": \n" ); document.write( "using Pythagorean Theorem with h as the hypotenuse \n" ); document.write( ": \n" ); document.write( "(-3)^2 + (-6)^2 = h^2 \n" ); document.write( ": \n" ); document.write( "h^2 = 9 + 36 = 45 \n" ); document.write( ": \n" ); document.write( "h = 3 * square root(5) \n" ); document.write( ": \n" ); document.write( "Note in this case theta = 180 + reference angle(alpha), alpha is always measured over the closest distance to the x axis \n" ); document.write( ": \n" ); document.write( "a) sin alpha = -6/3 * square root(5) = -2/square root(5) \n" ); document.write( ": \n" ); document.write( "cos alpha = -3/3 * square root(5) = -1/square root(5) \n" ); document.write( ": \n" ); document.write( "tan alpha = -6/-3 = 2 \n" ); document.write( ": \n" ); document.write( "b) tan^(-1) 2 = 63.4349 degrees \n" ); document.write( ": \n" ); document.write( "theta = 180 + 63.4349 = 243.4349 degrees \n" ); document.write( ": \n" ); document.write( "Note -sin alpha = sin theta, -cos alpha = cos theta and tan alpha = tan theta, that is, the sin and cos are negative in the third quadrant and the tan is positive \n" ); document.write( ": \n" ); document.write( " \n" ); document.write( " |