document.write( "Question 1113961: The three numbers (1/24)sinA, (1/3), and TanA are in geometric progression. Find the numerical value of cosA, where 0° < A < 90°. \n" ); document.write( "
Algebra.Com's Answer #728982 by stanbon(75887) ![]() You can put this solution on YOUR website! The three numbers (1/24)sinA, (1/3), and TanA are in geometric progression. Find the numerical value of cosA, where 0° < A < 90°. \n" ); document.write( "------------- \n" ); document.write( "Equation:: \n" ); document.write( "(1/3)/[(1/24)sin(A)] = [tan(A)/(1/3)] \n" ); document.write( "--------- \n" ); document.write( "Cross-multiply \n" ); document.write( "(1/24)sin(A)*tan(A) = 1/9 \n" ); document.write( "------ \n" ); document.write( "[sin^2(A)/cos(A)] = (1/9)/(1/24) \n" ); document.write( "------- \n" ); document.write( "(1-cos^2(A))/cos(A) = (8/3) \n" ); document.write( "----- \n" ); document.write( "3-3cos^2(A)- 8cos(A) = 0 \n" ); document.write( "----- \n" ); document.write( "3cos^2(A) + 8cos(A) -3 = 0 \n" ); document.write( "------- \n" ); document.write( "cos(A) = [-8+-sqrt(64-4*3*-3)]/(2*3) \n" ); document.write( "Positive answer = 2/(2*3) = 1/3 \n" ); document.write( "Negative answer = -18/(6) = -3 (not acceptable for cosine value) \n" ); document.write( "=========== \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "-----------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |