document.write( "Question 1113784: if a^2 + 1 = a, then the value of a^12 + a^6 +1 is \r
\n" );
document.write( "\n" );
document.write( "a)2\r
\n" );
document.write( "\n" );
document.write( "b)3\r
\n" );
document.write( "\n" );
document.write( "c)-3\r
\n" );
document.write( "\n" );
document.write( "d)1
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #728889 by ikleyn(52784)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "If a^2 + 1 = a, then a^2 - a + 1 = 0.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Multiply both sides by (a+1). You will get a^3 + 1 = 0, or a^3 = -1.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " So, the values of \"a\" that are the roots of the original equation, are the complex cubic roots of (-1).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " // If you solve the original equation using the quadratic formula, you will get the same result.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Therefore, a^12 = (a^3)^4 = (-1)^4 = 1, and\r\n" ); document.write( "\r\n" ); document.write( " a^6 = (a^3)^2 = (-1)^2 = 1.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " Thus a^12 + a^6 + 1 = 1 + 1 + 1 = 3.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The answer is 3. Choice b).\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |