document.write( "Question 1112951: A) Factorise: 2^2x -7 • 2^x -8 = 0
\n" ); document.write( "B) fund the value(s) for x in part a
\n" ); document.write( "

Algebra.Com's Answer #727993 by Benbuks(2)\"\" \"About 
You can put this solution on YOUR website!
A) Factorise: 2^2x -7 • 2^x -8 = 0
\n" ); document.write( "B) fund the value(s) for x in part a\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " SOLUTION\r
\n" ); document.write( "\n" ); document.write( "A) To factorize\r
\n" ); document.write( "\n" ); document.write( " 2^2x -7 • 2^x -8 = 0\r
\n" ); document.write( "\n" ); document.write( "this equation can be written as
\n" ); document.write( "
\n" ); document.write( "(2^x)² - 7•2^x -8 =0 \r
\n" ); document.write( "\n" ); document.write( "let p=2^x .( so any where 2^x is present in the equation, we replace it with p) . \r
\n" ); document.write( "\n" ); document.write( "by doing so, we would have \r
\n" ); document.write( "\n" ); document.write( "p² -7p -8=0 \r
\n" ); document.write( "\n" ); document.write( "because this is a now a quadratic equation, we would have two possible factors that satisfy the equation above . And they're -8 and 1
\n" ); document.write( " ( by inspection ) . You could however use the quadratic formula if you are not sure which factor to use .\r
\n" ); document.write( "\n" ); document.write( "Now, \r
\n" ); document.write( "\n" ); document.write( "p² -7p -8=0 \r
\n" ); document.write( "\n" ); document.write( "→ p² -8p + p -8 =0 \r
\n" ); document.write( "\n" ); document.write( "→ P(p-8) +1(p-8) =0 \r
\n" ); document.write( "\n" ); document.write( "( p-8) is common ,so we pull it out \r
\n" ); document.write( "\n" ); document.write( "→ (p-8)(p+1)=0\r
\n" ); document.write( "\n" ); document.write( "∴ ( 2^x -8)(2^x + 1)=0 ...( Factorized )
\n" ); document.write( "
\n" ); document.write( "B) we seek the possible real values of x \r
\n" ); document.write( "\n" ); document.write( "from ( 2^x -8)(2^x + 1)=0\r
\n" ); document.write( "\n" ); document.write( "for this to hold , it means that \r
\n" ); document.write( "\n" ); document.write( " ( 2^x -8) =0 or (2^x + 1)=0\r
\n" ); document.write( "\n" ); document.write( "→ 2^x =8 \r
\n" ); document.write( "\n" ); document.write( "→ 2^x = 2³\r
\n" ); document.write( "\n" ); document.write( " 2 on both sides cancels\r
\n" ); document.write( "\n" ); document.write( "we have \r
\n" ); document.write( "\n" ); document.write( "x= 3 \r
\n" ); document.write( "\n" ); document.write( "for the other case ,\r
\n" ); document.write( "\n" ); document.write( "2^x =-1
\n" ); document.write( "take square on both sides\r
\n" ); document.write( "\n" ); document.write( "→ 2^(2x) = 1 \r
\n" ); document.write( "\n" ); document.write( "→2^(2x) = 2^0 \r
\n" ); document.write( "\n" ); document.write( "→ 2x=0 \r
\n" ); document.write( "\n" ); document.write( "→ x= 0
\n" ); document.write( "but this value doesn't satisfy the\r
\n" ); document.write( "\n" ); document.write( " equation, hence we pick x=3 as our answer \r
\n" ); document.write( "\n" ); document.write( "∴ ANSWER :X=3
\n" ); document.write( "
\n" );