document.write( "Question 1112770: find the particular quadratic equation in standard form, of the parabola with vertex at (2,-5) and passing through (3,1). You know the third point because of symmetry. What are the x and y intercepts? \n" ); document.write( "
Algebra.Com's Answer #727787 by solver91311(24713)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "You are given sufficient information to write the function in vertex form directly except for the lead coefficient.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "where and are the coordinates of the vertex. Hence:\r
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(pay careful attention to the signs on the vertex coordinates)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We also know that:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Hence\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Giving\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Which expands and simplifies to:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The quadratic formula provides the -intercepts.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Alternatively:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We are given and and we know by symmetry that \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So since the general standard quadratic function is \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "We can write\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( " and\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "or more simply:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The best and least error-prone method of solving this system is by Gauss-Jordan Row Reduction. I will leave that as an exercise for the student. Performed correctly the process will yield the same coefficients as the method shown above.\r
\n" ); document.write( "\n" ); document.write( "Again, the -intercepts are obtained with the quadratic formula.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "John
\n" ); document.write( "
\n" ); document.write( "My calculator said it, I believe it, that settles it
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" );