document.write( "Question 1112770: find the particular quadratic equation in standard form, of the parabola with vertex at (2,-5) and passing through (3,1). You know the third point because of symmetry. What are the x and y intercepts? \n" ); document.write( "
Algebra.Com's Answer #727787 by solver91311(24713)![]() ![]() You can put this solution on YOUR website! \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "You are given sufficient information to write the function in vertex form directly except for the lead coefficient.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "where \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "(pay careful attention to the signs on the vertex coordinates)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We also know that:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hence\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Giving\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Which expands and simplifies to:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The quadratic formula provides the \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Alternatively:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We are given \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So since the general standard quadratic function is \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We can write\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "or more simply:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The best and least error-prone method of solving this system is by Gauss-Jordan Row Reduction. I will leave that as an exercise for the student. Performed correctly the process will yield the same coefficients as the method shown above.\r \n" ); document.write( "\n" ); document.write( "Again, the \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "John \n" ); document.write( " \n" ); document.write( "My calculator said it, I believe it, that settles it \n" ); document.write( " ![]() \n" ); document.write( " |