document.write( "Question 1111593: The minimum value of f(x) = x^2 + bx +4 is equal to the maximum value of g(x) = b + 2x -x^2. Find the value of b. Is It possible for the vertices of the two parabolas to coincide? \n" ); document.write( "
Algebra.Com's Answer #726586 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! The minimum value of f(x) = x^2 + bx +4 is equal to the maximum value of g(x) = b + 2x -x^2. Find the value of b. Is It possible for the vertices of the two parabolas to coincide? \n" ); document.write( "----- \n" ); document.write( "In each case the vertex occurs when x = -b/(2a) \n" ); document.write( "------ \n" ); document.write( "Examine f(x) = x^2 + bx + 4 \n" ); document.write( "Minimum value and Vertex occur at x = -b/(2*1) = -(1/2)b \n" ); document.write( "Minimum value is f(-b/2) = (b^2/4)-b^2/2+4 = (-b^2/4)+4 \n" ); document.write( "--- \n" ); document.write( "Examine g(x) = -x^2 + 2x + b \n" ); document.write( "Maximum value and Vertex occur at x = -2/(2*-1) = 1 \n" ); document.write( "Maximum value is g(1) = -1+2+b = 1+b \n" ); document.write( "----- \n" ); document.write( "Since min of f(x) = max of g(x), (-b^2/4)+4 = 1 + b \n" ); document.write( "-b^2/4 - b + 3 = 0 \n" ); document.write( "b = [1 +- sqrt(1-4(-1/4)(3)]/(2(-1/4)) = [1+-2]/(-1/2) = -6 or 1 \n" ); document.write( "----- \n" ); document.write( "Can they coincide ?:: \n" ); document.write( "For f(x), vertex is at (3,-5) or (-1/2,15/4) \n" ); document.write( "For g(x), vertex is at (1,-5) or (1,2) \n" ); document.write( "Ans: No \n" ); document.write( "------------- \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "------------ \n" ); document.write( " \n" ); document.write( " |