document.write( "Question 1111313: the remainders when f(x)=x³+ax²+bx+c is divided by (x-1),(x+2) and (x-2) are respectively 2,-1 and 15, find the quotient and remainder when f(x) is divided by (x+1). \n" ); document.write( "
Algebra.Com's Answer #726295 by ikleyn(52790)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "I will use the Remainder theorem. I will make all necessary explanations and references, but will not go in details.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Based on the Remainder theorem, from the given part you have these equations\r\n" ); document.write( "\r\n" ); document.write( "f(1) = 2, or 1^3 + a*1^2 + b*1 + c = 2 (1)\r\n" ); document.write( "\r\n" ); document.write( "f(-2) = -1, or (-2)^3 + a*(-2)^2 + b*(-2) + c = -1 (2)\r\n" ); document.write( "\r\n" ); document.write( "f(2) = 15, or 2^3 + a*2^2 + b*2 + c = 15 (3)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Simplifying\r\n" ); document.write( "\r\n" ); document.write( " 1 + a + b + c = 2 (1')\r\n" ); document.write( "-8 + 4a - 2b + c = -1 (2')\r\n" ); document.write( " 8 + 4a + 2b + c = 15 (3')\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Simplifying one more time\r\n" ); document.write( "\r\n" ); document.write( " a + b + c = 1 (1'')\r\n" ); document.write( " 4a - 2b + c = 7 (2'')\r\n" ); document.write( " 4a + 2b + c = 7 (3'')\r\n" ); document.write( "\r\n" ); document.write( "Subtract (2'') from (3''). You will get 4b = 0 ====> b = 0.\r\n" ); document.write( "\r\n" ); document.write( "Now substitute this value of b into eqs (1'') and (2''). You will get\r\n" ); document.write( "\r\n" ); document.write( " a + c = 1 (4)\r\n" ); document.write( " 4a + c = 7 (5)\r\n" ); document.write( "\r\n" ); document.write( "--------------------------------------- Subtract (4) from (5)\r\n" ); document.write( "\r\n" ); document.write( " 3a = 6 ====> a = 2\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Then from (4) c = 1 - 2 = -1\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Thus I restored the 3-rd degree polynomial. It is\r\n" ); document.write( "\r\n" ); document.write( "f(x) =\r \n" ); document.write( "\n" ); document.write( "-------------------- \n" ); document.write( " Theorem (the remainder theorem)\r \n" ); document.write( "\n" ); document.write( " 1. The remainder of division the polynomial \n" ); document.write( "\n" ); document.write( " 2. The binomial \n" ); document.write( "\n" ); document.write( " 3. The binomial \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "See the lessons\r \n" ); document.write( "\n" ); document.write( " - Divisibility of polynomial f(x) by binomial (x-a) and the Remainder theorem\r \n" ); document.write( "\n" ); document.write( " - Solved problems on the Remainder thoerem\r \n" ); document.write( "\n" ); document.write( "in this site.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Also, you have this free of charge online textbook in ALGEBRA-II in this site\r \n" ); document.write( "\n" ); document.write( " ALGEBRA-II - YOUR ONLINE TEXTBOOK.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The referred lessons are the part of this online textbook under the topic \n" ); document.write( "\"Divisibility of polynomial f(x) by binomial (x-a). The Remainder theorem\".\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Save the link to this online textbook together with its description\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Free of charge online textbook in ALGEBRA-I \n" ); document.write( "https://www.algebra.com/algebra/homework/quadratic/lessons/ALGEBRA-I-YOUR-ONLINE-TEXTBOOK.lesson\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "to your archive and use it when it is needed.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |