document.write( "Question 1110320: The sum of three consecutive terms of
\n" );
document.write( "an A.p is 6, while their product is -90, find the
\n" );
document.write( "common difference. \n" );
document.write( "
Algebra.Com's Answer #725335 by ikleyn(52797)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "Let \"a\" be the middle term of the sequence, so that the three terms are\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " a-d, a, a+d,\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "where d is the common difference of the AP. Then\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " (a-d) + d + (a+d) = 6,\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "which implies 3a = 6, a = 2.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Then the second condition becomes\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " (a-d)*a*(a+d) = -90, or\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " 2*(2-d)*(2+d) = -90,\r\n" ); document.write( "\r\n" ); document.write( " 4-d^2 = -45 ====> d^2 = 4 + 45 = 49 ====> d = +/-\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |