document.write( "Question 1107690: The point P(x, y) lies on the parabola y=(1/2)x^2. Find this point such that the sum S of the abscissa and ordinate is a minimum. \n" ); document.write( "
Algebra.Com's Answer #722716 by stanbon(75887) ![]() You can put this solution on YOUR website! The point P(x, y) lies on the parabola y=(1/2)x^2. Find this point such that the sum S of the abscissa and ordinate is a minimum. \n" ); document.write( "---- \n" ); document.write( "Sum of x and (1/2)x^2 = (1/2)x^2+x \n" ); document.write( "---- \n" ); document.write( "Mimimum occurs where x = -b/(2a) = -1/(2) = -1/2-Then y = (1/2)(1/2)^2 -(1/2) = (1/2)(1/4)-(1/2) = (1/8)-(1/2) = (2-8)/16 = -3/8 \n" ); document.write( "----- \n" ); document.write( "Minimum sum = (-1/2)+(-3/8) = (-4/8)+(-3/8) = -7/8 \n" ); document.write( "---------------- \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "-------------- \n" ); document.write( " |