document.write( "Question 1107096: Evaluate +... \n" ); document.write( "
Algebra.Com's Answer #722113 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "I am familiar with this problem . . . \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "It was posted to the forum a week or two ago,  and I solved it . . . \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So,  I know that  the formulation in  THIS  post IS   NOT  EXACTLY  PRECISE.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Therefore,  I edited it,  and the  EDITED  formulation  (the only correct,  valid and right version)  is  THIS:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "    Evaluate    \r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Below is the solution:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "Let  us consider, for brewity of writing, more general expression\r\n" );
document.write( "\r\n" );
document.write( "\"sqrt%28a+%2B+sqrt%28b+%2B+sqrt%28a+%2B+sqrt%28b%29+%2B+ellipsis%29%29%29\" = x,    (1)\r\n" );
document.write( "\r\n" );
document.write( "where  a = \"7%2F3\",  b = \"7%2F9\".  Square (1)  (both sides).  You will get then  \r\n" );
document.write( "\r\n" );
document.write( "\"a+%2B+sqrt%28b+%2B+sqrt%28a+%2B+sqrt%28b%29+%2B+ellipsis%29%29%29\" = \"x%5E2\",\r\n" );
document.write( "\r\n" );
document.write( "\"x%5E2-a\" = \"sqrt%28b+%2B+sqrt%28a+%2B+sqrt%28b%29+%2B+ellipsis%29%29%29\".        (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Square (2)   (both sides).  You will get then\r\n" );
document.write( "\r\n" );
document.write( "\"%28x%5E2-a%29%5E2\" = \"b%2Bsqrt%28a+%2B+sqrt%28b%29+%2B+ellipsis%29%29%29\".         (3)\r\n" );
document.write( "\r\n" );
document.write( "\"%28x%5E2-a%29%5E2-b\" = \"sqrt%28a+%2B+sqrt%28b%29+%2B+ellipsis%29%29%29\".         (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Notice that the right side of the expression (4) is the same as the given expression,  so it is equal to x.  Thus you have \r\n" );
document.write( "\r\n" );
document.write( "\"%28x%5E2-a%29%5E2+-+b\" = x.                  \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It is equivalent to\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\"x%5E4+-2a%2Ax%5E2+%2B+a%5E2\" - \"b\" = x,    or\r\n" );
document.write( "\r\n" );
document.write( "\"x%5E4+-+2a%2Ax%5E2+-+x+%2B+%28a%5E2-b%29\" = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now substitute here  a = \"7%2F3\",  b = \"7%2F9\". You will get this equation in the form\r\n" );
document.write( "\r\n" );
document.write( "\"x%5E4+-+%2814%2F3%29%2Ax%5E2+-+x+%2B+14%2F3\" = 0,   or, multiplying all the terms by 3\r\n" );
document.write( "\r\n" );
document.write( "\"3x%5E4+-14x%5E2+-+3x+%2B+14\" = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The plot of the last polynomial is shown below.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Plot y = \"3x%5E4+-+14x%5E2+-+3x+%2B+14\"\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It clearly shows that  x= 1  and  x= 2 are the roots.  Having this HINT, you can check it MANUALLY  (as I did . . . ).\r\n" );
document.write( "\r\n" );
document.write( "The two other roots of the polynomial are complex numbers.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Since  the value of  \"sqrt%287%2F3+%2B+sqrt%287%2F9+%2B+sqrt%287%2F3+%2B+sqrt%287%2F9%29+%2B+ellipsis%29%29%29\"  is, obviously, real number greater than 1, it can be only 2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "It proves that  \"sqrt%287%2F3+%2B+sqrt%287%2F9+%2B+sqrt%287%2F3+%2B+sqrt%287%2F9%29+%2B+ellipsis%29%29%29\" = 2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Answer.  \"sqrt%287%2F3+%2B+sqrt%287%2F9+%2B+sqrt%287%2F3+%2B+sqrt%287%2F9%29+%2B+ellipsis%29%29%29\" = 2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Check.   \"sqrt%287%2F3+%2B+sqrt%287%2F9+%2B+sqrt%287%2F3+%2B+sqrt%287%2F9%29%29%29%29\" = 1.984 (approximately).\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "---------------
\n" ); document.write( "See the lesson\r
\n" ); document.write( "\n" ); document.write( "    - Evaluating expressions that contain infinitely many square roots\r
\n" ); document.write( "\n" ); document.write( "in this site.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );