document.write( "Question 1106856: Use the Factor Theorem to determine whether the first polynomial is a factor of the second polynomial. \r
\n" ); document.write( "\n" ); document.write( "x - 2; 4x^2 - 3x + 22
\n" ); document.write( "

Algebra.Com's Answer #721859 by ikleyn(52908)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "The Factor Theorem (whose correct name is the \"Remainder theorem\") says that \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    the binomial (x-a) is the factor of the polynomial p(x) if and only if p(a) = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "In your case, check if the number \"2\" is the zero of the given polynomial:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"4%2A2%5E2+-+3%2A2+%2B+22\" = 4*4 - 6 + 22 = 16 - 6 + 22 = 32.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, the value of 2  IS NOT  the root of the polynomial;  hence, the binomial (x-2)  IS NOT  the factor of  4x^2 - 3x + 22.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "------------------
\n" ); document.write( "On the \"Remainder Theorem\" see the lessons\r
\n" ); document.write( "\n" ); document.write( "    - Divisibility of polynomial f(x) by binomial (x-a) and the Remainder theorem \r
\n" ); document.write( "\n" ); document.write( "    - Solved problems on the Remainder thoerem\r
\n" ); document.write( "\n" ); document.write( "in this site.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );