Algebra.Com's Answer #721708 by math_helper(2461)  You can put this solution on YOUR website! Since there are only 11 possible outcomes (2…12 inclusive), we can enumerate them with the number of ways they can each be formed:\r \n" );
document.write( "\n" );
document.write( " \n" );
document.write( "Outcome # ways \n" );
document.write( "2 1 \n" );
document.write( "3 2 ((1,2) or (2,1) on the roll of two dice) \n" );
document.write( "4 3 ((2,2), (1,3), (3,1)) \n" );
document.write( "5 4 ((1,4),(2,3),(3,2), and (4,1)) \n" );
document.write( "6 5 \n" );
document.write( "7 6 \n" );
document.write( "8 5 \n" );
document.write( "9 4 \n" );
document.write( "10 3 \n" );
document.write( "11 2 \n" );
document.write( "12 1 \n" );
document.write( " ——— \n" );
document.write( " 36 possible outcomes\r \n" );
document.write( "\n" );
document.write( "The probabilities are then just the (# of ways for a given outcome) / 36.\r \n" );
document.write( "\n" );
document.write( "For instance: \n" );
document.write( " rolling a 2 has probability 1/36 \n" );
document.write( " 7 is the most likely outcome, with probability 6/36 = 1/6\r \n" );
document.write( "\n" );
document.write( "You can compute the rest similarly.\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |