document.write( "Question 1106341: 4^(x+1)=23 \n" ); document.write( "
Algebra.Com's Answer #721299 by addingup(3677)\"\" \"About 
You can put this solution on YOUR website!
log(4^(x+1)) = log(23)
\n" ); document.write( "OK, remember that the logarithm of a number raised to a power is the power times the logarithm of the number:
\n" ); document.write( "(x+1)log(4) = log(23)
\n" ); document.write( "x+1 = (log(23))/(log(4))
\n" ); document.write( "now, log(a)/log(b) = log_b(a)
\n" ); document.write( "x+1 = log_4(23)
\n" ); document.write( "x = log_4(23)-1
\n" ); document.write( "x = log_2(23)/2 - 1
\n" ); document.write( "Note: to calculate log_2 in your calculator do the following:
\n" ); document.write( "log(23)/log(2) = 1.367278/0.30103 = 4.542
\n" ); document.write( "Now finish solving:
\n" ); document.write( "x = (4.542/2) -1 = 2.271-1 = 1.271
\n" ); document.write( "
\n" ); document.write( "
\n" );