document.write( "Question 1105806: Given that -2 is a zero of multiplicity 3 of the function P(x) = x^5 + 2x^4 - 9x^3 - 22x^2 + 4x +24 \n" ); document.write( "
Algebra.Com's Answer #720690 by Boreal(15235)![]() ![]() You can put this solution on YOUR website! (x+2)^3 is a factor. \n" ); document.write( "That is x^3+6x^2+12x+8-------------x^2-4x+3 \n" ); document.write( "That can be divided into x^5+2x^4-9x^3-22x^2+4x+24 \n" ); document.write( "==================x^5+6x^4+12x^3+8x^2---------change signs and subtract \n" ); document.write( "====================-4x^4-21x^3-30x^2+4x+24 \n" ); document.write( "====================-4x^4-24x^3-48x^2-32x \n" ); document.write( "=========================3x^3+18x^2+36x+24 \n" ); document.write( "=========================3x^3+18x^2+36x+24-change signs and subtract \n" ); document.write( "no remainder \n" ); document.write( "the quotient is x^2-4x+3, and that factors into (x-3)(x-1), so the other two roots are 1 and 3\r \n" ); document.write( "\n" ); document.write( " |