document.write( "Question 98979: My problem is written as; I had to name the property in each step. The first step they switched the x, so I think it's symmetric. step 2, the x came to be on the outsid and I'm thinking that's reflexive. I need help on these steps bcause they are confusing.\r
\n" ); document.write( "\n" ); document.write( "x(y+1)+(-1)x = x(y+1)+x(-1)
\n" ); document.write( " = x [(y+1)]+(-1)]
\n" ); document.write( " = x[y+(1+ (-1))]
\n" ); document.write( " = x [y+0]
\n" ); document.write( " = xy
\n" ); document.write( "

Algebra.Com's Answer #72039 by stanbon(75887)\"\" \"About 
You can put this solution on YOUR website!
x(y+1)+(-1)x = x(y+1)+x(-1)
\n" ); document.write( "commutative: (-1)x=x(-1)
\n" ); document.write( "------------------
\n" ); document.write( "= x [(y+1)]+(-1)]
\n" ); document.write( "distributive
\n" ); document.write( "-----------------
\n" ); document.write( "= x[y+(1+ (-1))]
\n" ); document.write( "associative
\n" ); document.write( "-----------------
\n" ); document.write( "= x [y+0]
\n" ); document.write( "additive inverse
\n" ); document.write( "-------------------
\n" ); document.write( "= xy
\n" ); document.write( "additive identity
\n" ); document.write( "======================
\n" ); document.write( "Cheers,
\n" ); document.write( "Stan H.
\n" ); document.write( "
\n" ); document.write( "
\n" );