document.write( "Question 1105399: Consider a three dimensional parallelpiped with width W, length l, and height h, given that the surface area of this parallelpiped is equal to a fixed value S, determine the section of parameters W, l and h so that the parallelpiped encloses the largest volume. \n" ); document.write( "
Algebra.Com's Answer #720222 by ikleyn(52937)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "At given surface area S the parallelepiped enclosed the largest volume is the cube with the sides \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "W = L = H = \"sqrt%28S%2F6%29\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "For very short and straightforward derivation/proof of this fact see the text under the link\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "https://math.stackexchange.com/questions/2428174/rectangular-parallelepiped-of-greatest-volume-for-a-given-surface-area-s\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "https://math.stackexchange.com/questions/2428174/rectangular-parallelepiped-of-greatest-volume-for-a-given-surface-area-s\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "written by Christian Blatter.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );