document.write( "Question 1105187: If n and p are positive integers such that 8(2^p) = 4^n , what is n in terms of p? \n" ); document.write( "
Algebra.Com's Answer #719921 by rothauserc(4718)![]() ![]() You can put this solution on YOUR website! 8(2^p) = 4^n \n" ); document.write( ": \n" ); document.write( "Note rewrite above as \n" ); document.write( ": \n" ); document.write( "2^(3+p) = 4^n \n" ); document.write( ": \n" ); document.write( "now we can write \n" ); document.write( ": \n" ); document.write( "4^n = 2^(3+p) \n" ); document.write( ": \n" ); document.write( "take logarithm base 4 of both sides \n" ); document.write( ": \n" ); document.write( "n = ln ( 2^(3+p) ) / ln (4) for 2^p > 0 and ln is the natural logarithm \n" ); document.write( ": \n" ); document.write( " \n" ); document.write( " |