document.write( "Question 1104321: 5. The graph of a function y= f(x), for -6 < or equal to x < or equal to -2.
\n" );
document.write( "The points (-6, 6) and (-2, 6) lie on the graph of f. There is a minimum point at (-4,0). \r
\n" );
document.write( "\n" );
document.write( "a. Write down the range of f. \r
\n" );
document.write( "\n" );
document.write( "b. Let g(x)=f(x-5).
\n" );
document.write( "Sketch the graph of g
\n" );
document.write( "c. Write down the domain of g. \n" );
document.write( "
Algebra.Com's Answer #719076 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! The graph of a function y= f(x), for -6 < or equal to x < or equal to -2. \n" ); document.write( "The points (-6, 6) and (-2, 6) lie on the graph of f. There is a minimum point at (-4,0). \n" ); document.write( "----- \n" ); document.write( "Plot those points and you will see a parabola will fit the points. \n" ); document.write( "Because the minimum is at (-4,0), y = a(x+4)^2 \n" ); document.write( "Solve for \"a\" using (-2,6) \n" ); document.write( "6 = a(2)^2 \n" ); document.write( "a = 3/2 \n" ); document.write( "Equation:: y = (3/2)(x+4)^2 \n" ); document.write( "--------------------------------- \n" ); document.write( "a. Write down the range of f. \n" ); document.write( "Parabola opening up has range: 0<= y < oo \n" ); document.write( "---------------------------------------- \n" ); document.write( "b. Let g(x)=f(x-5). \n" ); document.write( "g(x) = f(x-5) = (3/2)(x-5+4)^2 = (3/2)(x-1)^2 \n" ); document.write( "Sketch the graph of g \n" ); document.write( " \n" ); document.write( "------------------------ \n" ); document.write( "c. Write down the domain of g. \n" ); document.write( "All Real Numbers \n" ); document.write( "----------- \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "-------- \n" ); document.write( " |