document.write( "Question 1104281: Use Mathematical Induction to show that the following statement is true for all natural numbers n:
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #719030 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! Use Mathematical Induction to show that the following statement is true for all natural numbers n: 1^3+2^3+3^3+...+ n^3 = n^2(n+1)^2/(4) \n" ); document.write( "------- \n" ); document.write( "Show it is true for n = 1:: \n" ); document.write( "1^3 = [1^2(1+1)^2]/4 = (1*2^2)/4 \n" ); document.write( "1 = 4/4 \n" ); document.write( "1 = 1 \n" ); document.write( "-------------- \n" ); document.write( "Assume it is true for n = k, \n" ); document.write( " 1^3 + 2^3 + ... + k^3 = [k^2(k+1)^2]/4 \n" ); document.write( "------ \n" ); document.write( "Show it is true for n = k+1 \n" ); document.write( "1^3 + 2^3 + ..+ k^3 + (k+1)^3 = [k^2(k+1)^2]/4 + (k+1)^3 \n" ); document.write( "Factor to getl:: \n" ); document.write( "= (k+1)^2[k^2/4 + (k+1)] \n" ); document.write( "= (k+1)^2[(k^2 + 4k+ 4)]/4 \n" ); document.write( "= (k+1)^2[((k+1)+1)^2]/4 \n" ); document.write( "---- \n" ); document.write( "So it is true for n = k+1. \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "----------- \n" ); document.write( " |