document.write( "Question 1104108: The demand curve for a product is given by q=800-7p^2 , where p is the price. Find the price that maximizes revenue for sales of this product.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #718838 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "demand equation: q=800-7p^2 \n" ); document.write( "q = number of items demanded (aka number of items willing to be bought) \n" ); document.write( "p = price per item in dollars\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Revenue = (price per item)*(number of items bought) \n" ); document.write( "R = (p)*(q) \n" ); document.write( "R = p*(800-7p^2) \n" ); document.write( "R = p*800+p*(-7p^2) \n" ); document.write( "R = 800p-7p^2 \n" ); document.write( "R = -7p^2+800p\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let f(x) = -7x^2+800x. Finding the vertex of f(x) will lead to the max value of R(p)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In the case of f(x) = -7x^2+800x, it is in the form f(x) = ax^2+bx+c. So a = -7, b = 800 and c = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Vertex = (h,k)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Use this formula \n" ); document.write( "h = -b/(2*a) \n" ); document.write( "to find the x coordinate of the vertex\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "h = -b/(2*a) \n" ); document.write( "h = -800/(2*(-7)) <<---- plugging in a = -7 and b = 800 \n" ); document.write( "h = -800/(-14) \n" ); document.write( "h = 800/14 \n" ); document.write( "h = 400/7 \n" ); document.write( "h = 57.1428571428571 <<---- this value is approximate \n" ); document.write( "h = 57.14 <<---- rounding to 2 decimal places (aka to the nearest penny)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The x coordinate of the vertex is roughly 57.14. Since I replaced p with x, this indicates that the x coordinate of the vertex corresponds to the p coordinate of (p, R(p))\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So the max revenue will occur when the price per item is $57.14\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "----------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Extra Info:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Plug the value of h into the f(x) function to get the y coordinate of the vertex \n" ); document.write( "This will give the max revenue \n" ); document.write( "k = f(h) \n" ); document.write( "k = -7(57.14)^2+800(57.14) \n" ); document.write( "k = 22,857.1428 \n" ); document.write( "k = 22,857.14 \n" ); document.write( "The y coordinate of the vertex is 22,857.14 indicating the largest revenue possible is $22,857.14 (which happens when the price per item is set at $57.14)\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |