document.write( "Question 1103956: How do you find the nth term of the geometric sequence whose initial term and common ratio are: a1 = -6 , r = -4 \n" ); document.write( "
Algebra.Com's Answer #718661 by ikleyn(52790)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "By the same way as for ANY OTHER geometric progression:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    \"a%5Bn%5D\" = \"a%5B1%5D%2Ar%5E%28n-1%29\" = \"%28-6%29%2A%28-4%29%5E%28n-1%29\".\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "----------------------
\n" ); document.write( "There is a bunch of lessons on geometric progressions in this site\r
\n" ); document.write( "\n" ); document.write( "    - Geometric progressions\r
\n" ); document.write( "\n" ); document.write( "    - The proofs of the formulas for geometric progressions \r
\n" ); document.write( "\n" ); document.write( "    - Problems on geometric progressions\r
\n" ); document.write( "\n" ); document.write( "    - Word problems on geometric progressions\r
\n" ); document.write( "\n" ); document.write( "    - One characteristic property of geometric progressions\r
\n" ); document.write( "\n" ); document.write( "    - Solved problems on geometric progressions\r
\n" ); document.write( "\n" ); document.write( "    - Fresh, sweet and crispy problem on arithmetic and geometric progressions\r
\n" ); document.write( "\n" ); document.write( "    - Mathematical induction and geometric progressions\r
\n" ); document.write( "\n" ); document.write( "    - Mathematical induction for sequences other than arithmetic or geometric\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Also,  you have this free of charge online textbook in ALGEBRA-II in this site\r
\n" ); document.write( "\n" ); document.write( "    - ALGEBRA-II - YOUR ONLINE TEXTBOOK.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The referred lessons are the part of this online textbook under the topic \"Geometric progressions\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Save the link to this textbook together with its description\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Free of charge online textbook in ALGEBRA-II
\n" ); document.write( "https://www.algebra.com/algebra/homework/complex/ALGEBRA-II-YOUR-ONLINE-TEXTBOOK.lesson\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "into your archive and use when it is needed.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );