document.write( "Question 1102632: Find the value of k in x^4-4x^2+k that gives 4 complex zeros. \n" ); document.write( "
Algebra.Com's Answer #717344 by Theo(13342)![]() ![]() You can put this solution on YOUR website! in order for the equation to give you 4 complex zeros, the equaiton should not cross or touch the x-axis.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "set the equation equal to 0 to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x^4 - 4x^2 + k = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "let y = x^2.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the equation becomes y^2 - 4y + k = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this is a quadratic equation that can be solved through various means.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "i'm not sure if you have to do it this way, but the use of the quadratic formula should be helpful.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "in fact, if the discriminant is negative, then you will have complex zeroes.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "now that you have the formula in standard form of ay^2 + by + c = 0, you can use the quadratic formula as shown below:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "your formula is y^2 - 4y + k = 0 \n" ); document.write( "a = 1 \n" ); document.write( "b = -4 \n" ); document.write( "c = k\r \n" ); document.write( "\n" ); document.write( "use of the quadratic formula will get you:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "y = -b + sqrt(b^2 - 4ac) / (2a) or y = -b - sqrt(b^2 - 4ac) / (2a)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "b^2 - 4ac is the discriminant.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "when b = -4 and a = 1 and c = k, you get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "b^2 - 4ax = (-4)^2 - 4*1*k)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this simplifies to 16 - 4k\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "is 16 - 4k is negative, then the solution will be complex.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "set 16 - 4k < 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "add 4k to both sides of this equation to get 16 < 4k\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "divide both sides of this equation by 4 to get 4 < k\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this means that k > 4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "any value of k > 4 should do the trick.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "we'll use 5 as a test.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "when k = 5, your equation becomes y^2 - 4y + 5 = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "solve this using quadratic formula to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "y = 2+i or 2-i\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since you have previously set y = x^2, then you get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x^2 = 2+i or x^2 = 2-i\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this leads to x = plus or minus sqrt(2+i) or x = plus or minus sqrt(2-i).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "that's 4 complex roots of the equation x^4 - 4x^2 + 5 = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "your factors will be (x-sqrt(2+i)) * (x+sqrt(2+i)) * (x-sqrt(2-i)) * (x+sqrt(2-i))\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "if you multiply those factors together, you will get x^4 - 4x^2 + 5.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "if you graph x^4 - 4x^2 + 5, you will see that it doesn't cross the x-axis.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since it is a degree 4 equation, then it must have 4 roots, therefore all the roots have to be complex.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "here's the graph.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " ![]() \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |