document.write( "Question 1102187: given that x degrees is an angle in the First quadrant that 8sin^2 + 2cosx - 5 = 0
\n" );
document.write( "a) find cos x
\n" );
document.write( "b) find tan x \n" );
document.write( "
Algebra.Com's Answer #716849 by Alan3354(69443)![]() ![]() You can put this solution on YOUR website! given that x degrees is an angle in the First quadrant that 8sin^2 + 2cosx - 5 = 0 \n" ); document.write( "------------ \n" ); document.write( "8sin^2 + 2cosx - 5 = 0 \n" ); document.write( "8(1-cos^2) + 2cosx - 5 = 0 \n" ); document.write( "8 - 8cos^2 + 2cos - 5 = 0 \n" ); document.write( "8cos^2 - 2cos - 3 = 0 \n" ); document.write( "(2cos + 1)*(4cos - 3) = 0 \n" ); document.write( "cos(x) = -1/2 (not in Q1) \n" ); document.write( "cos(x) = 3/4 \n" ); document.write( "=================\r \n" ); document.write( "\n" ); document.write( "a) find cos x \n" ); document.write( "= 3/4 \n" ); document.write( "============== \n" ); document.write( "b) find tan x \n" ); document.write( "sin(x) = sqrt(1 - cos^2(x)) = sqrt(7)/4 \n" ); document.write( "tan = sin/cos \n" ); document.write( "tan(x) = sqrt(7)/3 \n" ); document.write( " |