Algebra.Com's Answer #716814 by ikleyn(52788)  You can put this solution on YOUR website! . \n" );
document.write( "\r\n" );
document.write( "First inequality 9x + 12y >= 61 is THIS restriction\r\n" );
document.write( "\r\n" );
document.write( " y >= .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Second inequality 8x + 4y >= 32 is THIS restriction\r\n" );
document.write( "\r\n" );
document.write( " y >= .\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Together with the inequalities x >= 0, y >= 0 they form THIS feasibility domain in the first quadrant QI, shown in the Figure below:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Plot y >= (over the read line) and y >= (over the green line)\r\n" );
document.write( "\r\n" );
document.write( "Feasibility domain is INFINITE AREA in Q1 OVER the both red and green lines.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Feasibility domain has 3 vertices:\r\n" );
document.write( "\r\n" );
document.write( " P1 = (0,8) (y-intercept to green line);\r\n" );
document.write( "\r\n" );
document.write( " P2 = (7/3,10/3) (intersection point of the red and green line);\r\n" );
document.write( "\r\n" );
document.write( " P3 = (61/9,0) (x-intercept to red line).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "You should calculate the value of the objective function Z = 5x + 30y at these three points:\r\n" );
document.write( "\r\n" );
document.write( " at P1: Z = 5*0 + 30*8 = 240;\r\n" );
document.write( "\r\n" );
document.write( " at P2: Z = 5*(7/3) + 30*(10/3) = 111.667;\r\n" );
document.write( "\r\n" );
document.write( " at P3: Z = 5*(61/9) + 30*0 = 33.889.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The minimum is achieved at the point P3 = (61/9,0), where x= 61/9, y=0, and is equal to 305/9 = 33.889 (approximately).\r\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "To see other mini-max problems solved by the Linear Programming method, look into the lesson\r \n" );
document.write( "\n" );
document.write( " - Solving minimax problems by the Linear Programming method \r \n" );
document.write( "\n" );
document.write( "in this site.\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |