document.write( "Question 1101996: Please help me
\n" );
document.write( "given thatis non-degenerate and
is multiplication commutable with
prove that
and
also multiplication commutable \n" );
document.write( "
Algebra.Com's Answer #716672 by jim_thompson5910(35256) ![]() You can put this solution on YOUR website! \n" ); document.write( "Given Fact #1: Matrix A is non-degenerate \n" ); document.write( "This means that the inverse of A exists. The inverse is denoted A^(-1)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Given Fact #2: Matrix B is multiplication commutable with matrix A. \n" ); document.write( "In other words, A*B = B*A holds true. The order of multiplication doesn't matter in this specific case (keep in mind that matrix multiplication isn't always commutative)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The goal is to prove that matrix B and the inverse A^(-1) are also multiplication commutable. We need to show the following: \n" ); document.write( "A^(-1)*B = B*A^(-1) \n" ); document.write( "or \n" ); document.write( "B*A^(-1) = A^(-1)*B\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------\r \n" ); document.write( "\n" ); document.write( "Here's one way to do that\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "A*B = B*A Start with fact #2 \n" ); document.write( "A^(-1)*A*B = A^(-1)*B*A Left-Multiply both sides by A^(-1). This step is possible because of fact #1 \n" ); document.write( "I*B = A^(-1)*B*A \n" ); document.write( "B = A^(-1)*B*A \n" ); document.write( "B*A^(-1) = A^(-1)*B*A*A^(-1)Right-Multiply both sides by A^(-1) \n" ); document.write( "B*A^(-1) = A^(-1)*B*I \n" ); document.write( "B*A^(-1) = A^(-1)*B\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So that shows A^(-1) and B are multiplication commutable\r \n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------\r \n" ); document.write( "\n" ); document.write( "Here's another way\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "A*B = B*A \n" ); document.write( "A*B*A^(-1) = B*A*A^(-1) Right-Multiply both sides by A^(-1) \n" ); document.write( "A*B*A^(-1) = B*I \n" ); document.write( "A*B*A^(-1) = B \n" ); document.write( "B = A*B*A^(-1) \n" ); document.write( "A^(-1)*B = A^(-1)*A*B*A^(-1)Left-Multiply both sides by A^(-1) \n" ); document.write( "A^(-1)*B = I*B*A^(-1) \n" ); document.write( "A^(-1)*B = B*A^(-1)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Giving us the same conclusion as before. Keep in mind that if X = Y, then Y = X for any matrices X and Y. \n" ); document.write( " \n" ); document.write( " |