document.write( "Question 1101996: Please help me
\n" ); document.write( "given that\"+A+\"is non-degenerate and \"B\" is multiplication commutable with\"+A\" prove that \"B+\"and \"A%5E-1+\" also multiplication commutable
\n" ); document.write( "

Algebra.Com's Answer #716672 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "Given Fact #1: Matrix A is non-degenerate
\n" ); document.write( "This means that the inverse of A exists. The inverse is denoted A^(-1)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Given Fact #2: Matrix B is multiplication commutable with matrix A.
\n" ); document.write( "In other words, A*B = B*A holds true. The order of multiplication doesn't matter in this specific case (keep in mind that matrix multiplication isn't always commutative)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The goal is to prove that matrix B and the inverse A^(-1) are also multiplication commutable. We need to show the following:
\n" ); document.write( "A^(-1)*B = B*A^(-1)
\n" ); document.write( "or
\n" ); document.write( "B*A^(-1) = A^(-1)*B\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------\r
\n" ); document.write( "\n" ); document.write( "Here's one way to do that\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "A*B = B*A Start with fact #2
\n" ); document.write( "A^(-1)*A*B = A^(-1)*B*A Left-Multiply both sides by A^(-1). This step is possible because of fact #1
\n" ); document.write( "I*B = A^(-1)*B*A
\n" ); document.write( "B = A^(-1)*B*A
\n" ); document.write( "B*A^(-1) = A^(-1)*B*A*A^(-1)Right-Multiply both sides by A^(-1)
\n" ); document.write( "B*A^(-1) = A^(-1)*B*I
\n" ); document.write( "B*A^(-1) = A^(-1)*B\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So that shows A^(-1) and B are multiplication commutable\r
\n" ); document.write( "\n" ); document.write( "------------------------------------------------------------------\r
\n" ); document.write( "\n" ); document.write( "Here's another way\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "A*B = B*A
\n" ); document.write( "A*B*A^(-1) = B*A*A^(-1) Right-Multiply both sides by A^(-1)
\n" ); document.write( "A*B*A^(-1) = B*I
\n" ); document.write( "A*B*A^(-1) = B
\n" ); document.write( "B = A*B*A^(-1)
\n" ); document.write( "A^(-1)*B = A^(-1)*A*B*A^(-1)Left-Multiply both sides by A^(-1)
\n" ); document.write( "A^(-1)*B = I*B*A^(-1)
\n" ); document.write( "A^(-1)*B = B*A^(-1)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Giving us the same conclusion as before. Keep in mind that if X = Y, then Y = X for any matrices X and Y.
\n" ); document.write( "
\n" ); document.write( "
\n" );