document.write( "Question 1101261: find values for a,b,c,and d so that the function f (x) =ax³ + bx² + cx + d has a relative maximum at (-2,6) and a relative minimum at (2,-10) \n" ); document.write( "
Algebra.Com's Answer #715857 by Boreal(15235)\"\" \"About 
You can put this solution on YOUR website!
f (x) =ax³ + bx² + cx + d
\n" ); document.write( "f(0)=d
\n" ); document.write( "use point (-2, 6)
\n" ); document.write( "f(-2)=-8a+4b-2c+d=6
\n" ); document.write( "f(2)=8a+4b+2c+d=-10
\n" ); document.write( "add these and 8b+2d=-4, or 4b+d=-2, d=-4b-2
\n" ); document.write( "Now the derivatives are 3ax^2+2bx+c=0, and that occurs when x=-2 and x=2. So we have
\n" ); document.write( "12a-4b+c=0
\n" ); document.write( "12a+4b+c=0
\n" ); document.write( "24a+2c=0
\n" ); document.write( "12a+c=0, c=-12a b=0 and d=-2
\n" ); document.write( "Therefore, -8a-2c-2=6 and -8a-2c=8 or -4a-c=4
\n" ); document.write( "and 8a+2c-2=-10 and 8a+2c=-8 or 4a+c=-4 (the same thing as above)
\n" ); document.write( "c=-12a
\n" ); document.write( "4a-12a=-4 and -8a=-4 a=1/2
\n" ); document.write( "c=-6
\n" ); document.write( "f(x)=(1/2)x^3-6x-2
\n" ); document.write( "a=1/2
\n" ); document.write( "b=0
\n" ); document.write( "c=-6
\n" ); document.write( "d=-2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"graph%28300%2C300%2C-10%2C10%2C-10%2C10%2C%281%2F2%29x%5E3-6x-2%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );