document.write( "Question 1099540: Represent in the form of coordinates (x,y) the solution to this system of linear equations: 3x + 2y = 48 6x + 6y = 64 \n" ); document.write( "
Algebra.Com's Answer #713990 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "3x + 2y = 48, (1)\r\n" ); document.write( "6x + 6y = 64. (2)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Divide eq(2) by 2 (both sides). You will get the modified system\r\n" ); document.write( "\r\n" ); document.write( "3x + 2y = 48, (1')\r\n" ); document.write( "3x + 3y = 32. (2')\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Subtract eq(1) from eq(2) (both sides). You will get\r\n" ); document.write( "\r\n" ); document.write( "y = 32 - 48 = -16.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Thus you just found the solution for y.\r\n" ); document.write( "\r\n" ); document.write( "Now substitute it into either equation (1) or (2). I will substitute into eq(1). You will get\r\n" ); document.write( "\r\n" ); document.write( "3x + 2*(-16) = 48 ====> 3x = 48 + 32 = 80 ====> x =\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |