document.write( "Question 1098198: Suppose that over a six-year period ,1,000 dollars accumulated to 1,959 dollars in an investment certificate in which interest was compounded quarterly.
\n" );
document.write( "(a)Find the nominal rate of interest, compounded quarterly, that was earned. (Round your answer to 2 decimal places.)
\n" );
document.write( "(b) Find the effective annual rate (EAR) rounded to 2 decimal places. \r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #713801 by jorel1380(3719) You can put this solution on YOUR website! (a)To solve this, we need: \n" ); document.write( "1959=1000*(1+r/4)^(4*6) \n" ); document.write( "1.959=(1+r/4)^24 \n" ); document.write( "ln 1.959=ln (1+r/4)^24=24 ln (1+r/4) \n" ); document.write( "ln (1+r/4)=0.02801808912343348753142591433615 \n" ); document.write( "e^ln (1+r/4)=1+r/4=e^0.02801808912343348753142591433615=1.0284142873661539848196528368801 \n" ); document.write( "r=.1137 or 11.37% \n" ); document.write( "(b)(1+.1137/4)^4 -1=1.1185937952418743147625868352589-1=0.1186=11.86% EAR \n" ); document.write( " |