document.write( "Question 1098976: Find all degree solutions in the interval 0° ≤ θ < 360°. If rounding is necessary, round to the nearest tenth of a degree. Use your graphing calculator to verify the solution graphically. (Enter your answers as a comma-separated list.)
\n" );
document.write( "4 sin^2 θ − 8 cos 2θ = 0
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #713518 by Theo(13342)![]() ![]() You can put this solution on YOUR website! your equation is:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4 * sin^2(x) - 8 * cos(2x) = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "x represents the angle theta.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "add 8 * cos(2x) to both sides of this equation and you get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4 * sin^2(x) = 8 * cos(2x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(2x) is equal to cos^2(x) - sin^2(x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos^2(x) is equal to 1 - sin^2(x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "cos(2x) is therefore equal to 1 - sin^2(x) - sin^2(x).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this simplifies to cos(2x) = 1 - 2 * sin^2(x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "your equation becomes:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4 * sin^2(x) = 8 * (1 - 2 * sin^2(x))\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "simplify this to get 4 * sin^2(x) = 8 - 16 * sin^2(x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "add 16 * sin^2(x) to both sides of this equation to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "20 * sin^2(x) = 8\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "divide both sides of this equation by 20 to get sin^2(x) = 8/20.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "take the square root of both sides of this equation to get sin(x) = sqrt(8/20)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "use your calculator to find the arcsin of sqrt(8/20).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "you will find that the angle is equal to 39.23152048 degrees.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the equivalent angle in the second quadrant is 180 minus that.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the equivalent angle in the third quadrant is 180 plus that.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the equivalent angle angle in the fourth quadrant is 360 minus that.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the equivalent angles in each quadrant are therefore.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "quadrant 1 = 39.23152048 \n" ); document.write( "quadrant 2 = 140.7684795 \n" ); document.write( "quadrant 3 = 218,2315295 \n" ); document.write( "quadrant 4 = 320.7684795\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "you want to check that 4 * sin^2(x) = 8 * cos(2x) = 0 for each of these angles.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "quadrant 1 = 0 \n" ); document.write( "quadrant 2 = 0 \n" ); document.write( "quadrant 3 = 0 \n" ); document.write( "quadrant 4 = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the formula checks out ok in all 4 quadrants, therefore your solution is the angles in each of the quadrant.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this is confirmed by the following graph of y = 4 * sin^2(x) and y = 8 * cos(2x).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the intersection of these 2 equations is your solution and it confirms that the angle in each of those quadrants provides the correct solution.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "here's the graph.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " ![]() \n" ); document.write( " \n" ); document.write( " |