document.write( "Question 1098865: The no. Of solution of (x,y,z)to the system of equations x+2y+4z=9, 4yz+2xz+xy=13,xyz=13, such that at least two of x,y,z are integers is...
\n" );
document.write( "A)3
\n" );
document.write( "B)5
\n" );
document.write( "C)6
\n" );
document.write( "D)4 \n" );
document.write( "
Algebra.Com's Answer #713343 by ikleyn(52794)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "The system as it is posted, HAS NO integer or rational solutions AT ALL.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Therefore, the problem makes no sense.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "But, actually, a brilliant problem is hidden behind this NONSENSE.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In order to make it VISIBLE and SOLVABLE, I changed the condition in this way: \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( " Solve the system\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " x + 2y + 4z = 9, \r\n" ); document.write( " 4yz + 2xz + xy = 13,\r\n" ); document.write( " xyz = 3.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Notice that I changed the third equation.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Solution\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Introduce new variables \r\n" ); document.write( "\r\n" ); document.write( "p = x, q = 2y and r = 4z. (1)\r\n" ); document.write( "\r\n" ); document.write( "Then pq = 2xy, pr = 4xz, and qr = 8yz, so pq + pr + qr = 2xy + 4xz + 8yz = 2*(xy + 2xz + 4yz).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Therefore, the original system takes the form\r\n" ); document.write( "\r\n" ); document.write( "p + q + r = 9, (2) \r\n" ); document.write( "\r\n" ); document.write( "pq + pr + qr = 26, (3) (26 = 2*13)\r\n" ); document.write( "\r\n" ); document.write( "pqr = 24. (4) (24 = 8*3)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Thus, according to the Vieta's theorem, p, q and r are the roots of this polynomial equation of the degree 3:\r\n" ); document.write( "\r\n" ); document.write( "t^3 - 9t^2 + 26t - 24 = 0.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "By applying the \"Rational root theorem\", you can find the integer roots of this equation.\r\n" ); document.write( "\r\n" ); document.write( "If exist, they are among the integer divisors of the constant term 24, i.e. among the number set\r\n" ); document.write( "\r\n" ); document.write( "{+/-1, +/-2, +/-3, +/-6, +/-12, +/-24}.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Or, you can plot a graph, and it will tell you/ (will show you) what the roots are:\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |