.
\n" );
document.write( ".
\n" );
document.write( "x^2+xy+yz+zx=30
\n" );
document.write( "y^2+xy+yz+zx=15
\n" );
document.write( "z^2+xy+yz+zx=18 \r
\n" );
document.write( "\n" );
document.write( "find x^2+y^2+z^2
\n" );
document.write( "~~~~~~~~~~~~~~~~~~~~\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Solution\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "Step 1. Factor left side of each equation. You will get\r\n" );
document.write( "\r\n" );
document.write( " x^2+xy+yz+zx = 30 is the same as (x+y)*(x+z) = 30 (1)\r\n" );
document.write( " y^2+xy+yz+zx = 15 is the same as (x+y)*(y+z) = 15 (2)\r\n" );
document.write( " z^2+xy+yz+zx = 18 is the same as (x+z)*(y+z) = 18 (3)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Step 2. Multiply equations (1), (2) and (3) (left sides and right sides). You will get\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "
= 30*15*18 = (15*2)*15*(2*3^2) =
=
=
.\r\n" );
document.write( "\r\n" );
document.write( " Take the square root of both sides. You will get (x+y)*(x+z)*(y+z) = +/-
, or\r\n" );
document.write( "\r\n" );
document.write( " (x+y)*(x+z)*(y+z) = +/- 90. (4)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Step 3. First, let us consider the case\r\n" );
document.write( "\r\n" );
document.write( " (x+y)*(x+z)*(y+z) = 90. (5)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " Divide eq(5) by eq(1) (both sides). You will get y + z = 3. (6) (3 = 90/30)\r\n" );
document.write( "\r\n" );
document.write( " Divide eq(5) by eq(2) (both sides). You will get x + z = 6. (7) (6 = 90/15)\r\n" );
document.write( "\r\n" );
document.write( " Divide eq(5) by eq(3) (both sides). You will get x + y = 5. (8) (5 = 90/18)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Step 4. To solve the system (6), (7), (8), add all three equation (6), (7) and (8) (both sides). You will get\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( " 2x + 2y + 2z = 3 + 6 + 5 = 14. It implies x + y + z = 7. (9)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " Now subtract eq(6) from eq(9) (both sides). You will get x = 7-3 = 4.\r\n" );
document.write( "\r\n" );
document.write( " Next, subtract eq(7) from eq(9) (both sides). You will get y = 7-6 = 1.\r\n" );
document.write( "\r\n" );
document.write( " Next, subtract eq(7) from eq(9) (both sides). You will get z = 7-5 = 2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " So, (x,y,z) = (4,1,2) is the solution in this case.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Step 5. Now let us consider the case\r\n" );
document.write( "\r\n" );
document.write( " (x+y)*(x+z)*(y+z) = -90. \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( " Doing by the same way, you will obtain the solution (x,y,z) = (-4,-1,-2) in this case.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Step 6. Check. It is enough to check the positive solution only.\r\n" );
document.write( "\r\n" );
document.write( " \r\n" );
document.write( " 4^2 + 4*1 + 4*2 + 1*2 = 30. ! Correct !\r\n" );
document.write( " 1^2 + 4*1 + 4*2 + 1*2 = 15. ! Correct !\r\n" );
document.write( " 2^2 + 4*1 + 4*2 + 1*2 = 18. ! Correct !\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Answer. The given system has two and only two solutions (x,y,z) = (4,1,2) and (x,y,z) = (-4,-1,-2).\r\n" );
document.write( "\r\n" );
document.write( " Therefore,
=
= 21.\r\n" );
document.write( "
\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "