document.write( "Question 1095620: How many distinguishable permutations can be made of the letters in the word STEGOSAURUS? \n" ); document.write( "
Algebra.Com's Answer #710134 by ikleyn(52793)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "How many distinguishable permutations can be made of the letters in the word STEGOSAURUS? \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "The given word contains 11 letters.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Of them, the letter S is repeated 3 times, and\r\n" ); document.write( " the letter U is repeated 2 times.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The rest of the letters are unique.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "So, the number of distinguishable permutations is\r \n" ); document.write( "\n" ); document.write( "We divide the total number of permutations of 11! by 3!, because all permutations that permute the letter S only, lead to indistinguishable arrangements.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We divide the total number of permutations of 11! by 2!, because all permutations that permute the letter U only, lead to indistinguishable arrangements, too.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "------------------ \n" ); document.write( "On Permutations, see the lessons\r \n" ); document.write( "\n" ); document.write( " - Introduction to Permutations\r \n" ); document.write( "\n" ); document.write( " - PROOF of the formula on the number of Permutations\r \n" ); document.write( "\n" ); document.write( " - Problems on Permutations\r \n" ); document.write( "\n" ); document.write( "in this site.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |