document.write( "Question 1095189: Can you please solve this equation using Cardano's method:
\n" );
document.write( "x^3+24x-25=0 \n" );
document.write( "
Algebra.Com's Answer #709833 by rothauserc(4718) You can put this solution on YOUR website! The general form for a cubic equation is \n" ); document.write( ": \n" ); document.write( "ax^3 + bx^2 + cx + d = 0 \n" ); document.write( ": \n" ); document.write( "the problem's cubic equation is \n" ); document.write( ": \n" ); document.write( "x^3 + 24x - 25 = 0 \n" ); document.write( ": \n" ); document.write( "this is a depressed cubic equation, the general form is x^3 + Ax = B \n" ); document.write( ": \n" ); document.write( "therefore we have \n" ); document.write( ": \n" ); document.write( "x^3 + 24x = 25 \n" ); document.write( ": \n" ); document.write( "we determine s and t so that \n" ); document.write( ": \n" ); document.write( "1) 3st = A \n" ); document.write( "2) s^3 - t^3 = B \n" ); document.write( ": \n" ); document.write( "Cardano's method tells us that x = s - t will be one of the roots of the cubic equation \n" ); document.write( ": \n" ); document.write( "Solving the equation 1 for s and substituting into equation 2, we get \n" ); document.write( ": \n" ); document.write( "(A/3t)^3 - t^3 = B \n" ); document.write( ": \n" ); document.write( "simplifying this we get \n" ); document.write( ": \n" ); document.write( "t^6 + Bt^3 - (A^3/27) = 0 \n" ); document.write( ": \n" ); document.write( "let u = t^3, then we have a quadratic equation \n" ); document.write( ": \n" ); document.write( "u^2 + Bu - (A^3/27) = 0 \n" ); document.write( ": \n" ); document.write( "referring to our depressed cubic equation, we need s and t to satisfy \n" ); document.write( ": \n" ); document.write( "3) 3st = 24 \n" ); document.write( "4) s^3 - t^3 = 25 \n" ); document.write( ": \n" ); document.write( "u^2 +25u -(24^3/27) = 0 \n" ); document.write( ": \n" ); document.write( "using quadratic formula, we have \n" ); document.write( ": \n" ); document.write( "u = (-25 + square root(25^2 - 4 * 1 * (-512))) / (2*1) = 13.3505 \n" ); document.write( "u = (-25 - square root(25^2 - 4 * 1 * (-512))) / (2*1) = -38.3505 \n" ); document.write( ": \n" ); document.write( "we reject the negative solution for u, therefore \n" ); document.write( ": \n" ); document.write( "t^3 = 13.3505 \n" ); document.write( "s^3 = t^3 + 25 = 13.3505 + 25 = 38.3508 \n" ); document.write( ": \n" ); document.write( "***************************************************************************** \n" ); document.write( "x = (38.3505)^(1/3) - (13.3505)^(1/3) = 1.000000955 approximately 1 \n" ); document.write( ": \n" ); document.write( "therefore one solution is x=1, the other two solutions are complex \n" ); document.write( ": \n" ); document.write( "(x-1)(x^2+x+25) = 0 = x^3 + 24x - 25 \n" ); document.write( ": \n" ); document.write( "we see that the two solutions to x^2 + x + 25 = 0 (using quadratic formula) are \n" ); document.write( ": \n" ); document.write( "x = (1/2)(-1-3isquare root(11) \n" ); document.write( "x = (1/2)(-1+3isquare root(11) \n" ); document.write( "***************************************************************************** \n" ); document.write( ": \n" ); document.write( "********************************************* \n" ); document.write( ": \n" ); document.write( " |