document.write( "Question 1092505: an object in launched upward at 110 feet per second from a platform 75 feet high . \r
\n" );
document.write( "\n" );
document.write( "a) When will the object be 120 feet high?\r
\n" );
document.write( "\n" );
document.write( "b) What is its maximum height?\r
\n" );
document.write( "\n" );
document.write( "c) When will it reach the ground?
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #707132 by rothauserc(4718)![]() ![]() You can put this solution on YOUR website! the height of the object at time t is modeled by the following formula \n" ); document.write( ": \n" ); document.write( "s(t) = –gt^2 + v0t + h0, where g is the acceleration due to gravity, v0 is the objects initial velocity, h0 is the initial height of the object \n" ); document.write( ": \n" ); document.write( "since we are working in feet, g=16, also v0=110 and h0=75 \n" ); document.write( ": \n" ); document.write( "s(t) = -16t^2 +110t +75 \n" ); document.write( ": \n" ); document.write( "this is a parabola that curves downward \n" ); document.write( ": \n" ); document.write( "the graph of this equation is \n" ); document.write( ": \n" ); document.write( " \n" ); document.write( ": \n" ); document.write( "a) 120 = -16t^2 +110t +75 \n" ); document.write( "-16t^2 +110t -45 = 0 \n" ); document.write( "t^2 -6.875t +2.8125 = 0 \n" ); document.write( "use quadratic formula to solve for t \n" ); document.write( "t = (-(-6.875) +square root((-6.875)^2 -4(1)(2.8125))) / 2(1) = 6.4382 seconds \n" ); document.write( "t = (-(-6.875) -square root((-6.875)^2 -4(1)(2.8125))) / 2(1) = 0.4368 seconds \n" ); document.write( "Note that the object attains the height of 120 feet at two different times(on the way up and again on the way down) \n" ); document.write( ": \n" ); document.write( "b) t = -b/2a(this is the t value associated with the vertex) \n" ); document.write( "s(t) = -16t^2 +110t +75 \n" ); document.write( "t = -110 / 2(-16) = 3.4375 \n" ); document.write( "s(3.4375) = -16(3.4375)^2 +110(3.4375) +75 = 264.0625 feet at its maximum height \n" ); document.write( ": \n" ); document.write( "c) s is 0 when the object hits the ground \n" ); document.write( "0 = -16t^2 +110t +75 \n" ); document.write( "t^2 -6.875t -4.6875 = 0 \n" ); document.write( "t = (-(-6.875) +square root((-6.875)^2 -4(1)(-4.6875))) / 2(1) = 7.5 \n" ); document.write( "t = (-(-6.875) +square root((-6.875)^2 -4(1)(-4.6875))) / 2(1) = -0.625 \n" ); document.write( "we reject the negative value for t, therefore the object hits the ground after 7.5 seconds \n" ); document.write( ":\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |