document.write( "Question 1092428: How do I determine whether the sequence converge or diverges. If it converges, give the limit.
\n" );
document.write( "U1=1, U n+1= Un/3 for n≥1 (1,n+1, n after U should be smaller size).
\n" );
document.write( "Please help. Thank you. \n" );
document.write( "
Algebra.Com's Answer #707086 by Theo(13342)![]() ![]() You can put this solution on YOUR website! \r \n" ); document.write( "\n" ); document.write( "if abs(r) < 1, then the geometric sum will converge.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "if abs(r) > 1, then the geometric sum will not converge.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "abs(r) < 1 means that:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "r < 1 or -r < 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "solve for r in each of these equations and you get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "r < 1 is already solved for r.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "start with -r < 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "multiply both sides of this equation by -1 to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "r > -1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "you get abs(r) < 1 when r < 1 and when r > -1.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this means -1 < r < 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the geometric series will converge when that occurs.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since your common ratio is 1/3 which is > -1 and < 1, then your geometric series will converge.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the formula for the sum of a geometric series is:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Sn = A1 * (1 - r^n) / (1-r)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "when -1 < r < 1, this series will converge to a limit as n approaches infinity.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "that's because r^n will get closer and closer to 0 as n approaches infinity.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "the limit of Sn as n approaches infinity when -1 < r < 1 is:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "limit of Sn as n approaches infinity = 1 / (1-r).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since r = 1/3 in your problem, you get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "limit of Sn as n approaches infinity = 1 / (1-(1/3)).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "this results in limit of Sn as n approaches infinity = 3/2 or 1.5.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "here's a reference on the sum of a geometric series.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "http://mathematics.laerd.com/maths/geometric-progression-intro.php \n" ); document.write( " \n" ); document.write( " |