document.write( "Question 1091924: The line 3x+2y = 24 meets y- axis at A and x- axis at B. The perpendicular bisector of AB meets the line
\n" );
document.write( "through (0, -1 ) parallel to x- axis at C. Then area of the triangle ABC is \n" );
document.write( "
Algebra.Com's Answer #706425 by Fombitz(32388)![]() ![]() You can put this solution on YOUR website! At A, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "A:(8,0) \n" ); document.write( "At B, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "B:(0,12) \n" ); document.write( "The slope of AB is, \n" ); document.write( " \n" ); document.write( "The perpendicular bisector to AB would have a slope, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "and it goes through (0,-1), \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "So now is (0,-1) point C? \n" ); document.write( "Here's a picture of the perpendicular bisector to AB through (0,-1) but now unless (0,-1) is point C, I'm confused as to where C would be. \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "If that's the case, \n" ); document.write( " \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( " \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( ". \n" ); document.write( "If not, please provide additional information.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |