document.write( "Question 1091273: How do you find the two possible fourth values of a geometric sequence. There are two geometric sequences with 3rd term 5 and 5th term 80. What are the possible 4th terms? \n" ); document.write( "
Algebra.Com's Answer #705662 by ikleyn(52790)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "
\r\n" );
document.write( "\"a%5B3%5D\" = \"a%5Er%5E2\" = 5     for the 3-rd term.\r\n" );
document.write( "\r\n" );
document.write( "\"a%5B5%5D\" = \"a%5Er%5E4\" = 80    for the 5-th term.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Take the ratio\r\n" );
document.write( "\r\n" );
document.write( "\"a%5B5%5D%2Fa%5B3%5D\" = \"80%2F5\" = 16  = \"%28a%2Ar%5E4%29%2F%28a%2Ar%5E2%29\" = \"r%5E2\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus you have an equation for \"r\":  \"r%5E2\" = 16,  which has TWO solutions:  r = 4   and/or  r = -4.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, the two possibilities for the 4-th term are\r\n" );
document.write( "\r\n" );
document.write( "1)  \"a%5B4%5D\" = \"a%5B3%5D%2Ar\" = 5*4    = 20,   and\r\n" );
document.write( "\r\n" );
document.write( "2)  \"a%5B4%5D\" = \"a%5B3%5D%2Ar\" = 5*(-4) = -20.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "----------------
\n" ); document.write( "On geometric progressions, see the lessons in this site\r
\n" ); document.write( "\n" ); document.write( "    - Geometric progressions\r
\n" ); document.write( "\n" ); document.write( "    - The proofs of the formulas for geometric progressions \r
\n" ); document.write( "\n" ); document.write( "    - Problems on geometric progressions\r
\n" ); document.write( "\n" ); document.write( "    - Word problems on geometric progressions\r
\n" ); document.write( "\n" ); document.write( "    - One characteristic property of geometric progressions\r
\n" ); document.write( "\n" ); document.write( "    - Solved problems on geometric progressions\r
\n" ); document.write( "\n" ); document.write( "    - Fresh, sweet and crispy problem on arithmetic and geometric progressions\r
\n" ); document.write( "\n" ); document.write( "    - Mathematical induction and geometric progressions\r
\n" ); document.write( "\n" ); document.write( "    - Mathematical induction for sequences other than arithmetic or geometric\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Also,  you have this free of charge online textbook in ALGEBRA-II in this site\r
\n" ); document.write( "\n" ); document.write( "    - ALGEBRA-II - YOUR ONLINE TEXTBOOK.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The referred lessons are the part of this online textbook under the topic \"Geometric progressions\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );