document.write( "Question 1090201: Could you please explain the procedure in solving this problem:\r
\n" ); document.write( "\n" ); document.write( "a1=7
\n" ); document.write( "an=224
\n" ); document.write( "Sn=441
\n" ); document.write( "n=?
\n" ); document.write( "

Algebra.Com's Answer #704613 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!

\n" ); document.write( "You haven't stated whether this is an arithmetic sequence or a geometric sequence. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's assume for a moment that the sequence is arithmetic. If that's the case, then we'd use the formula
\n" ); document.write( "Sn = (n/2)*(a1+an)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Plug in the given info and solve for n
\n" ); document.write( "Sn = (n/2)*(a1+an)
\n" ); document.write( "441 = (n/2)*(7+224)
\n" ); document.write( "441 = (n/2)*231
\n" ); document.write( "441/231 = n/2
\n" ); document.write( "n/2 = 441/231
\n" ); document.write( "n/2 = 21/11
\n" ); document.write( "n = 2*(21/11)
\n" ); document.write( "n = 42/11
\n" ); document.write( "n = 3.81818181818181 (approximate)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The fact that n is NOT a whole number indicates that the sequence is NOT arithmetic. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's assume that the sequence is geometric instead.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The pattern of geometric terms (a1,a2,a3,...) look like this
\n" ); document.write( "a1 = 7
\n" ); document.write( "a2 = a1*r = 7*r
\n" ); document.write( "a3 = a2*r = (7r)*r = 7r^2 = 7r^(3-1)
\n" ); document.write( "a4 = a3*r = (7r^2)*r = 7r^3 = 7r^(4-1)
\n" ); document.write( "a5 = a4*r = (7r^3)*r = 7r^4 = 7r^(5-1)
\n" ); document.write( "Each term is the result of multiplying the common ratio r by the previous term
\n" ); document.write( "Take note how the exponents are formed.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The pattern continues forever. The nth term is
\n" ); document.write( "an = a1*r^(n-1)
\n" ); document.write( "an = 7*r^(n-1)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Since an = 224, we can say
\n" ); document.write( "an = 7*r^(n-1)
\n" ); document.write( "224 = 7*r^(n-1)
\n" ); document.write( "224/7 = r^(n-1)
\n" ); document.write( "32 = r^(n-1)
\n" ); document.write( "2^5 = r^(n-1)
\n" ); document.write( "2^(6-1) = r^(n-1)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Matching up terms shows that
\n" ); document.write( "r = 2 and n = 6\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So because n is a whole number, this means we do have a geometric sequence. In this case,\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "an = 7*r^(n-1)
\n" ); document.write( "an = 7*(2)^(n-1)
\n" ); document.write( "a1 = 7*2^(1-1) = 7
\n" ); document.write( "a2 = 7*2^(2-1) = 14
\n" ); document.write( "a3 = 7*2^(3-1) = 28
\n" ); document.write( "a4 = 7*2^(4-1) = 56
\n" ); document.write( "a5 = 7*2^(5-1) = 112
\n" ); document.write( "a6 = 7*2^(6-1) = 224\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Adding up the six terms leads to
\n" ); document.write( "a1+a2+a3+a4+a5+a6 = 7+14+28+56+112+224 = 441
\n" ); document.write( "which confirms the answer.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Or you can use the shortcut formula
\n" ); document.write( "Sn = a1*(1-r^n)/(1-r)
\n" ); document.write( "Sn = 7*(1-2^6)/(1-2)
\n" ); document.write( "Sn = 7*(1-64)/(1-2)
\n" ); document.write( "Sn = 7*(-63)/(-1)
\n" ); document.write( "Sn = 7*63
\n" ); document.write( "Sn = 441
\n" ); document.write( "which is another way to confirm the answer.
\n" ); document.write( "
\n" ); document.write( "
\n" );