document.write( "Question 1090160: Hi! Please help me solve
\n" ); document.write( "Given g(x)=x^2+2x+1
\n" ); document.write( "a.3g(3)
\n" ); document.write( "b.g(-2)-5
\n" ); document.write( "c.g(-2)-5
\n" ); document.write( "d.g(b-1)
\n" ); document.write( "Thank you!
\n" ); document.write( "

Algebra.Com's Answer #704566 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
A. The goal here is to first evaluate g(3). Then multiply both sides by 3 to compute 3*g(3).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(x) = x^2 + 2x + 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(3) = (3)^2 + 2(3) + 1 ... replace every x with 3. Use PEMDAS to evaluate.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(3) = 9 + 2(3) + 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(3) = 9 + 6 + 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(3) = 16\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "3*g(3) = 3*16 ... multiply both sides by 3\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "3*g(3) = 48\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "B. Start by computing g(-2). Then subtract 5 from both sides\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(x) = x^2 + 2x + 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(-2) = (-2)^2 + 2(-2) + 1 ... every x has been replaced with -2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(-2) = 4 + 2(-2) + 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(-2) = 4 - 4 + 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(-2) = 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(-2)-5 = 1-5 ... subtract 5 from both sides\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(-2)-5 = -4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "C. This is a repeat of part B. Possibly a typo?\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "D. Unlike the other parts (A and B), we aren't dealing with a single number. Instead we have an algebraic expression. The rules will effectively be the same though. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(x) = x^2 + 2x + 1\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(b-1) = (b-1)^2 + 2(b-1) + 1 ... replace every x with \"b-1\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(b-1) = b^2 - 2b + 1 + 2(b-1) + 1 ... FOIL\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(b-1) = b^2 - 2b + 1 + 2b - 2 + 1 ... Distribute\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "g(b-1) = b^2
\n" ); document.write( "
\n" );