document.write( "Question 1090083: The polynomial $f(x)$ has degree 3. If $f(-1) = 15$, $f(0)= 0$, $f(1) = -5$, and $f(2) = 12$, then what are the $x$-intercepts of the graph of $f$? Please explain your work thoroughly so I can understand. Thanks!
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #704506 by ikleyn(52812)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( " \r\n" ); document.write( "Let f(x) = ax^3 + bx^2 + cx + d with unknown coefficients a, b, c and d.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Since f(0) = 0, it implies d = 0 (to see it, simply substitute x= 0 into the polynomial).\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "So, you need to determine a, b and c.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "f(-1) = 15 ====> -a + b - c = 15, (1)\r\n" ); document.write( "\r\n" ); document.write( "f(1) = -5 ====> a + b + c = -5, (2)\r\n" ); document.write( "\r\n" ); document.write( "f(2) = 12 ====> 8a + 4b + 2c = 12. (3)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Add equations (1) and (2). You will get 2b = 15 + (-5) = 10 ====> b = 5.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Then equations (2) and (3) take the form\r\n" ); document.write( "\r\n" ); document.write( " a + 5 + c = -5 (4) (instead of (2))\r\n" ); document.write( "8a + 4*5 + 2c = 12 (5) (instead of (3))\r\n" ); document.write( "\r\n" ); document.write( "or, which is the same\r\n" ); document.write( "\r\n" ); document.write( " a + c = -10, (4')\r\n" ); document.write( "4a + c = -4, (5')\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Subtract (4') from (5') to get 3a = 6, a = 2.\r\n" ); document.write( "\r\n" ); document.write( "Then from (4') c = -12.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Thus the polynomial is f(x) =\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |