document.write( "Question 1089798: Analyze the graph of the function. R(x)= x^2+6x-27 /x-9\r
\n" ); document.write( "\n" ); document.write( "a) What is the domain of R(x)?
\n" ); document.write( "b) What is the equation of the vertical asymptote(s) of R(x)? x=
\n" ); document.write( "c) What is the equation of the horizontal or oblique asymptote of R(x)? y=
\n" ); document.write( "

Algebra.Com's Answer #704206 by MathLover1(20849)\"\" \"About 
You can put this solution on YOUR website!
\"R%28x%29=+%28x%5E2%2B6x-27%29+%2F%28x-9+%29\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "vertical asymptote: \r
\n" ); document.write( "\n" ); document.write( "Vertical Asymptotes of \"f%28x%29+=+p%28x%29+%2F+q%28x%29\":\r
\n" ); document.write( "\n" ); document.write( "An asymptote is a line that the curve approaches but does not cross. The equations of the vertical asymptotes can be found by finding the roots of \"q%28x%29\". Completely ignore the numerator when looking for vertical asymptotes, only the denominator matters. \r
\n" ); document.write( "\n" ); document.write( "if \"%28x-9+%29=0\"->\"x=9\"\r
\n" ); document.write( "\n" ); document.write( "Vertical asymptote is \"x=9\"\r
\n" ); document.write( "\n" ); document.write( "The location of the \"horizontal\" asymptote is determined by looking at the degrees of the numerator (\"n\") and denominator (\"m\").\r
\n" ); document.write( "\n" ); document.write( " If \"n%3Cm\", the x-axis, \"y=0\" is the horizontal asymptote.
\n" ); document.write( " If \"n=m\", then \"y=an%2Fbm\" is the horizontal asymptote. That is, the ratio of the leading coefficients.
\n" ); document.write( " If \"n%3Em\", there is \"no\" horizontal asymptote.
\n" ); document.write( "However, if \"n=m%2B1\", there is an \"oblique\" or slant asymptote.\r
\n" ); document.write( "\n" ); document.write( "in your case \"n=2\" and \"m=1\", so \"n%3Em\" which means there is \"no\" \"horizontal\" asymptote\r
\n" ); document.write( "\n" ); document.write( "To find the equation of the \"oblique\" asymptote, perform long division (synthetic if it will work) by dividing the denominator into the numerator. \r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"R%28x%29+=+%28x%5E2+%2B+6+x+-+27%29%2F%28x+-+9%29+\"\r
\n" ); document.write( "\n" ); document.write( " -------x+15
\n" ); document.write( "(x - 9) |x^2 + 6 x - 27
\n" ); document.write( "---------x^2-9x
\n" ); document.write( "----------0+15x
\n" ); document.write( "-------------15x-27
\n" ); document.write( "-------------15x-135
\n" ); document.write( "----------------0+108\r
\n" ); document.write( "\n" ); document.write( "is asymptotic to \"x+%2B+15\"\r
\n" ); document.write( "\n" ); document.write( "Oblique asymptote: \"R%28x%29+=x+%2B+15\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );