document.write( "Question 1089639: ~(Z v Y) → ~W, ~U → ~(Z v Y), (~U → ~W) → (T → S), S → (R v P), [T → (RvP)] → [(~R v K) • ~K], therefore, ~K \n" );
document.write( "
Algebra.Com's Answer #704088 by math_helper(2461)  You can put this solution on YOUR website! \n" );
document.write( "1. ~(Z v Y) → ~W Premise \n" );
document.write( "2. ~U → ~(Z v Y) Premise \n" );
document.write( "3. (~U → ~W) → (T → S) Premise \n" );
document.write( "4. S → (R v P) Premise \n" );
document.write( "5. [T → (RvP)] → [(~R v K) • ~K] Premise \n" );
document.write( "{ To show conclusion: ~K } \n" );
document.write( "——————————————————————————————— \n" );
document.write( "::6. ~U Assumption, start of Conditional Proof (CP) \n" );
document.write( "::7. ~(Z v Y) 6,2 Modus Ponens (MP) \n" );
document.write( "::8. ~W 7,1 MP \n" );
document.write( "9. ~U→~W 6-8, CP \n" );
document.write( "10. T→S 9,3 MP \n" );
document.write( "11. T→(R v P) 10,4 Hypothetical Syllogism (HS) \n" );
document.write( "12. (~R v K) • ~K 11,5 MP \n" );
document.write( "13. ~K 12 Simplification (Simp), conclusion \n" );
document.write( " \n" );
document.write( " |
\n" );