document.write( "Question 1089635: ~M, (~M • ~N) → (Q → P), P → R, ~N, therefore, Q → R \n" ); document.write( "
Algebra.Com's Answer #704068 by math_helper(2461)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( " \r\n" ); document.write( "1. ~M Premise\r\n" ); document.write( "2. (~M• ~N)→ (Q → P) Premise \r\n" ); document.write( "3. P → R Premise\r\n" ); document.write( "4. ~N Premise\r\n" ); document.write( " { To show conclusion: Q → R }\r\n" ); document.write( "—————————————————\r\n" ); document.write( "5. ~M• ~N 1,4 Conjunction (Conj) \r\n" ); document.write( "6. Q → P 5,2 Modus Ponens (MP)\r\n" ); document.write( "::7. Q Assumption (begin conditional proof, CP)\r\n" ); document.write( "::8. P 7,6 MP\r\n" ); document.write( "::9. R 8,3 MP\r\n" ); document.write( "10. Q → R 7,8,9 End of CP, and the conclusion\r\n" ); document.write( "\r\n" ); document.write( "—\r\n" ); document.write( " \n" ); document.write( "Steps 7-9 are conditional. Essentially they show that if Q is true then the logical path through the premises is that R follows, hence Q—>R. \n" ); document.write( "— \n" ); document.write( "Warning: I am a bit rusty with these proofs, so a 2nd opinion won't hurt.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |