Algebra.Com's Answer #703898 by ikleyn(52864)  You can put this solution on YOUR website! . \n" );
document.write( "If x^2 + y^2 =2 and xy = 1, find x^2-y^2 \n" );
document.write( "~~~~~~~~~~~~~~~~~~~\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "If \r\n" );
document.write( "\r\n" );
document.write( "x^2 + y^2 =2 (1) and \r\n" );
document.write( "xy = 1, (2)\r\n" );
document.write( "\r\n" );
document.write( "then x = , = and, after substituting it into (1), you get this equation for the single unknown y\r\n" );
document.write( "\r\n" );
document.write( " + = 2, which is the same as\r\n" );
document.write( "\r\n" );
document.write( " - 2 + = 0, or\r\n" );
document.write( "\r\n" );
document.write( " = 0, which implies\r\n" );
document.write( "\r\n" );
document.write( "y = 1/y and then y^2 = 1; finally, y = 1 OR y= -1.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "If y = 1, then, obviously x = +/-1; If y = -1, then, again, x = +/-1.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Taking into account that xy = 1, you can conclude that the solutions to (1),(2) are these two pairs (two points): (1,1) and (-1,-1).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "And you can easily check that in both cases - = 0.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Answer. If x^2 + y^2 =2 and xy = 1, then x^2-y^2 = 0.\r\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "Solved.\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |