document.write( "Question 1089204: In triangle ABC, the value of acotA+bcotB+ccotC is?
\n" ); document.write( "a)R+r
\n" ); document.write( "b)(R+r)/R
\n" ); document.write( "c)2(R+r)
\n" ); document.write( "d)3(R+r)
\n" ); document.write( "Also explain how?
\n" ); document.write( "

Algebra.Com's Answer #703720 by ikleyn(52914)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "In triangle ABC, the value of acotA+bcotB+ccotC is?
\n" ); document.write( "a)R+r
\n" ); document.write( "b)(R+r)/R
\n" ); document.write( "c)2(R+r)
\n" ); document.write( "d)3(R+r)
\n" ); document.write( "Also explain how?
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "It requires two ideas.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "1.  a*cot(A) + b*cot(B) + c*cot(C) =  = .    (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "     Next,  \"a%2Fsin%28A%29\" = 2R,   \"b%2Fsin%28B%29\" = 2R  and  \"c%2Fsin%28C%29\" = 2R,  where R is the radius of the circumscribed circle around the triangle,\r\n" );
document.write( "\r\n" );
document.write( "     according to the Sine Law theorem (see the lessons Law of sines  and  Law of sines - the Geometric Proof in this site).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    Therefore, the line (1) can be continued in this way\r\n" );
document.write( "\r\n" );
document.write( "    a*cot(A) + b*cot(B) + c*cot(C) = 2R*(sin(A) + sin(B) + sin(C)).     (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    It is the first idea, and it allows us to reduce the problem to calculation of  sin(A) + sin(B) + sin(C).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "2.  The second idea is  THIS:\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "        For any triangle with angles  A, B and C\r\n" );
document.write( "\r\n" );
document.write( "        sin(A) + sin(B) + sin(C) = \"r%2FR+%2B+1\",                              (3)  \r\n" );
document.write( "\r\n" );
document.write( "        where r is the radius of the inscribed circle, while R is the radius of the circumscribed circle about the triangle.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "    Deriving formula (3) requires some technique, but it is known proof, which you can find at this reference\r\n" );
document.write( "\r\n" );
document.write( "    https://math.stackexchange.com/questions/734395/how-to-prove-that-fracrr1-cos-a-cos-b-cos-c\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "3.  Finally,  a*cot(A) + b*cot(B) + c*cot(C) = 2R*(r/R + 1)}}} = 2*(R+r).\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );